Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.491
Filtrar
1.
BMC Geriatr ; 24(1): 326, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600478

RESUMO

BACKGROUND: Preservation of mobility and fall prevention have a high priority in geriatric rehabilitation. Square-Stepping Exercise (SSE) as an evaluated and standardized program has been proven to be an effective training for older people in the community setting to reduce falls and improve subjectively perceived health status. This randomized controlled trial (RCT), for the first time, examines SSE in the context of inpatient early geriatric rehabilitation compared to conventional physiotherapy (cPT). METHODS: Data were collected in a general hospital in the department of acute geriatric care at admission and discharge. Fifty-eight inpatients were randomized to control (CG, n = 29) or intervention groups (IG, n = 29). CG received usual care with cPT five days per week during their hospital stay. For the IG SSE replaced cPT for at least six sessions, alternating with cPT. Physical function was measured with the Short Physical Performance Battery (SPPB) and Timed "Up & Go" (TUG). Gait speed was measured over a distance of 10 m. In a subgroup (n = 17) spatiotemporal gait parameters were analyzed via a GAITRite® system. RESULTS: Both the SPPB total score improved significantly (p = < 0.001) from baseline to discharge in both groups, as did the TUG (p < 0.001). In the SPPB Chair Rise both groups improved with a significant group difference in favor of the IG (p = 0.031). For both groups gait characteristics improved: Gait speed (p = < 0.001), walk ratio (p = 0.011), step length (p = < 0.001), stride length (p = < 0.001) and double support (p = 0.009). For step length at maximum gait speed (p = 0.054) and stride length at maximum gait speed (p = 0.060) a trend in favor of the IG was visible. CONCLUSIONS: SSE in combination with a reduced number of sessions of cPT is as effective as cPT for inpatients in early geriatric rehabilitation to increase physical function and gait characteristics. In the Chair Rise test SSE appears to be superior. These results highlight that SSE is effective, and may serve as an additional component for cPT for older adults requiring geriatric acute care. TRIAL REGISTRATION: DRKS00026191.


Assuntos
Exercício Físico , Pacientes Internados , Humanos , Idoso , Projetos Piloto , Caminhada , Terapia por Exercício/métodos , Marcha , Equilíbrio Postural
2.
Sci Rep ; 14(1): 9542, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664550

RESUMO

The introduction of women into U.S. military ground close combat roles requires research into sex-specific effects of military training and operational activities. Knee osteoarthritis is prevalent among military service members; its progression has been linked to occupational tasks such as load carriage. Analyzing tibiofemoral arthrokinematics during load carriage is important to understand potentially injurious motion and osteoarthritis progression. The study purpose was to identify effects of load carriage on knee arthrokinematics during walking and running in recruit-aged women. Twelve healthy recruit-aged women walked and ran while unloaded (bodyweight [BW]) and carrying additional + 25%BW and + 45%BW. Using dynamic biplane radiography and subject-specific bone models, tibiofemoral arthrokinematics, subchondral joint space and center of closest contact location between subchondral bone surfaces were analyzed over 0-30% stance (separate one-way repeated measures analysis of variance, load by locomotion). While walking, medial compartment contact location was 5% (~ 1.6 mm) more medial for BW than + 45%BW at foot strike (p = 0.03). While running, medial compartment contact location was 4% (~ 1.3 mm) more lateral during BW than + 25%BW at 30% stance (p = 0.04). Internal rotation was greater at + 45%BW compared to + 25%BW (p < 0.01) at 30% stance. Carried load affects tibiofemoral arthrokinematics in recruit-aged women. Prolonged load carriage could increase the risk of degenerative joint injury in physically active women.


Assuntos
Articulação do Joelho , Caminhada , Suporte de Carga , Humanos , Feminino , Suporte de Carga/fisiologia , Caminhada/fisiologia , Articulação do Joelho/fisiologia , Adulto , Corrida/fisiologia , Militares , Fenômenos Biomecânicos , Fêmur/fisiologia , Fêmur/diagnóstico por imagem , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/etiologia , Tíbia/fisiologia , Tíbia/diagnóstico por imagem , Adulto Jovem
3.
J Neuroeng Rehabil ; 21(1): 55, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622634

RESUMO

BACKGROUND: The therapeutic benefits of motor imagery (MI) are now well-established in different populations of persons suffering from central nervous system impairments. However, research on similar efficacy of MI interventions after amputation remains scarce, and experimental studies were primarily designed to explore the effects of MI after upper-limb amputations. OBJECTIVES: The present comparative study therefore aimed to assess the effects of MI on locomotion recovery following unilateral lower-limb amputation. METHODS: Nineteen participants were assigned either to a MI group (n = 9) or a control group (n = 10). In addition to the course of physical therapy, they respectively performed 10 min per day of locomotor MI training or neutral cognitive exercises, five days per week. Participants' locomotion functions were assessed through two functional tasks: 10 m walking and the Timed Up and Go Test. Force of the amputated limb and functional level score reflecting the required assistance for walking were also measured. Evaluations were scheduled at the arrival at the rehabilitation center (right after amputation), after prosthesis fitting (three weeks later), and at the end of the rehabilitation program. A retention test was also programed after 6 weeks. RESULTS: While there was no additional effect of MI on pain management, data revealed an early positive impact of MI for the 10 m walking task during the pre-prosthetic phase, and greater performance during the Timed Up and Go Test during the prosthetic phase. Also, a lower proportion of participants still needed a walking aid after MI training. Finally, the force of the amputated limb was greater at the end of rehabilitation for the MI group. CONCLUSION: Taken together, these data support the integration of MI within the course of physical therapy in persons suffering from lower-limb amputations.


Assuntos
Amputados , Membros Artificiais , Humanos , Equilíbrio Postural , Estudos de Tempo e Movimento , Amputação Cirúrgica , Amputados/reabilitação , Caminhada/fisiologia
4.
Int J Rehabil Res ; 47(2): 75-80, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595089

RESUMO

Practicing walking in a safety suspension device allows patients to move freely and without excessive reliance on a therapist, which requires correcting errors and may facilitate motor learning. This opens the possibility that patients with subacute stroke may improve their walking ability more rapidly. Therefore, we tested the hypothesis that overground gait training in a safety suspension device will result in achieving faster supervision-level walking than gait training without the suspension device. Twenty-seven patients with stroke admitted to the rehabilitation ward with functional ambulation categories (FAC) score of 2 at admission were randomly allocated to safety suspension-device group (SS group) or conventional assisted-gait training group (control group). In addition to regular physical therapy, each group underwent additional gait training for 60 min a day, 5 days a week for 4 weeks. We counted the days until reaching a FAC score of 3 and assessed the probability using Cox regression models. The median days required to reach a FAC score of 3 were 7 days for the SS group and 17.5 days for the control group, which was significantly different between the groups ( P  < 0.05). The SS group had a higher probability of reaching a FAC score of 3 after adjusting for age and admission motor impairment (hazard ratio = 3.61, 95% confidence interval = 1.40-9.33, P  < 0.01). The gait training with a safety suspension device accelerates reaching the supervision-level walking during inpatient rehabilitation. We speculate that a safety suspension device facilitated learning by allowing errors to be experienced and correct in a safe environment.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Caminhada , Humanos , Masculino , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Feminino , Pessoa de Meia-Idade , Idoso , Transtornos Neurológicos da Marcha/reabilitação , Marcha/fisiologia , Acidente Vascular Cerebral , Terapia por Exercício/instrumentação
5.
BMJ Open ; 14(4): e081883, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631833

RESUMO

INTRODUCTION: Supervised exercise training is among the first-line therapies for patients with peripheral artery disease (PAD). Current recommendations for exercise include guidance focusing on claudication pain, programme and session duration, and frequency. However, no guidance is offered regarding exercise training intensity. This study aims to compare the effects of 12-week-long supervised walking exercise training (high-intensity interval training (HIIT) vs moderate-intensity exercise (MOD)) in patients with chronic symptomatic PAD. METHODS AND ANALYSIS: This study is a monocentric, interventional, non-blinded randomised controlled trial. 60 patients (30 in each group) will be randomly allocated (by using the random permuted blocks) to 12 weeks (three times a week) of HIIT or MOD. For HIIT, exercise sessions will consist of alternating brief high-intensity (≥85% of the peak heart rate (HRpeak)) periods (≤60 s) of work with periods of passive rest. Patients will be asked to complete 1 and then 2 sets of 5-7 (progressing to 10-15×60 s) walking intervals. For the MOD group, exercise training sessions will consist of an alternation of periods of work performed at moderate intensity (≤76% HRpeak) and periods of passive rest. Interventions will be matched by training load. The primary outcome will be the maximal walking distance. Secondary outcomes will include functional performance, functional capacity, heath-related quality of life, self-perceived walking abilities, physical activity and haemodynamic parameters. ETHICS AND DISSEMINATION: The Angiof-HIIT Study was approved by the Human Research Ethics Committee of the Canton de Vaud (study number: 2022-01752). Written consent is mandatory prior to enrolment and randomisation. The results will be disseminated via national and international scientific meetings, scientific peer-reviewed journals and social media. TRIAL REGISTRATION NUMBER: NCT05612945.


Assuntos
Treinamento Intervalado de Alta Intensidade , Qualidade de Vida , Humanos , Exercício Físico/fisiologia , Caminhada , Claudicação Intermitente , Terapia por Exercício/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Sci Rep ; 14(1): 8970, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637567

RESUMO

Compared to their closest ape relatives, humans walk bipedally with lower metabolic cost (C) and less mechanical work to move their body center of mass (external mechanical work, WEXT). However, differences in WEXT are not large enough to explain the observed lower C: humans may also do less work to move limbs relative to their body center of mass (internal kinetic mechanical work, WINT,k). From published data, we estimated differences in WINT,k, total mechanical work (WTOT), and efficiency between humans and chimpanzees walking bipedally. Estimated WINT,k is ~ 60% lower in humans due to changes in limb mass distribution, lower stride frequency and duty factor. When summing WINT,k to WEXT, between-species differences in efficiency are smaller than those in C; variations in WTOT correlate with between-species, but not within-species, differences in C. These results partially support the hypothesis that the low cost of human walking is due to the concerted low WINT,k and WEXT.


Assuntos
Hominidae , Pan troglodytes , Animais , Humanos , Metabolismo Energético , Fenômenos Biomecânicos , Caminhada , Marcha
7.
Front Public Health ; 12: 1387658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660348

RESUMO

Background: A growing body of studies have examined the effect of exercise in people with multiple sclerosis (MS), while findings of available studies were conflicting. This meta-analysis aimed to explore the effects of exercise on balance, walking ability, walking endurance, fatigue, and quality of life in people with MS. Methods: We searched PubMed, Web of Science, Scopus, and Cochrane databases, through March 1, 2024. Inclusion criteria were: (1) RCTs; (2) included an intervention and control group; (3) had people with MS as study subjects; (4) had balance, walking ability, walking endurance, fatigue, or quality of life as the outcome measures. Exclusion criteria were: (1) non-English publications; (2) animal model publications; (3) review articles; and (4) conference articles. A meta-analysis was conducted to calculate weighted mean difference (WMD) and 95% confidence interval (CI). Cochrane risk assessment tool and Physiotherapy Evidence Database (PEDro) scale were used to evaluate the methodological quality of the included studies. Results: Forty studies with a total of 56 exercise groups (n = 1,300) and 40 control groups (n = 827) were eligible for meta-analysis. Exercise significantly improved BBS (WMD, 3.77; 95% CI, 3.01 to 4.53, P < 0.00001), TUG (WMD, -1.33; 95% CI, -1.57 to -1.08, P < 0.00001), MSWS-12 (WMD, -2.57; 95% CI, -3.99 to -1.15, P = 0.0004), 6MWT (WMD, 25.56; 95% CI, 16.34 to 34.79, P < 0.00001), fatigue (WMD, -4.34; 95% CI, -5.83 to -2.84, P < 0.00001), and MSQOL-54 in people with MS (WMD, 11.80; 95% CI, 5.70 to 17.90, P = 0.0002) in people with MS. Subgroup analyses showed that aerobic exercise, resistance exercise, and multicomponent training were all effective in improving fatigue in people with MS, with resistance exercise being the most effective intervention type. In addition, a younger age was associated with a larger improvement in fatigue. Furthermore, aerobic exercise and multicomponent training were all effective in improving quality of life in people with MS, with aerobic exercise being the most effective intervention type. Conclusion: Exercise had beneficial effects in improving balance, walking ability, walking endurance, fatigue, and quality of life in people with MS. Resistance exercise and aerobic exercise are the most effective interventions for improving fatigue and quality of life in people with MS, respectively. The effect of exercise on improving fatigue was associated with the age of the participants, with the younger age of the participants, the greater the improvement in fatigue. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=371056, identifier: CRD42022371056.


Assuntos
Terapia por Exercício , Fadiga , Esclerose Múltipla , Qualidade de Vida , Humanos , Terapia por Exercício/métodos , Caminhada , Exercício Físico , Equilíbrio Postural
8.
BMC Geriatr ; 24(1): 358, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649830

RESUMO

BACKGROUND: Older people with hip fracture are often medically frail, and many do not regain their walking ability and level of physical activity. The aim of this study was to examine the relationship between pre-fracture recalled mobility, fear of falling, physical activity, walking habits and walking speed one year after hip fracture. METHODS: The study had a longitudinal design. Measurements were performed 3-5 days postoperatively (baseline) and at one year after the hip fracture. The measurements at baseline were all subjective outcome measures recalled from pre-fracture: The New Mobility Scale (NMS), the 'Walking Habits' questionnaire, The University of California, Los Angeles (UCLA) Activity Scale, Fear of Falling International (FES-I) and demographic variables. At one year 4-meter walking speed, which was a part of the Short Physical Performance Battery (SPPB) was assessed. RESULTS: At baseline 207 participants were included and 151 were assessed after one year. Their age was mean (SD) 82.7 (8.3) years (range 65-99 years). Those with the fastest walking speed at one year had a pre-fracture habit of regular walks with a duration of ≥ 30 min and/or a frequency of regular walks of 5-7 days a week. Age (p =.020), number of comorbidities (p <.001), recalled NMS (p <.001), and recalled UCLA Activity Scale (p =.007) were identified as predictors of walking speed at one year. The total model explained 54% of the variance in walking speed. CONCLUSIONS: Duration and frequency of regular walks before the hip fracture play a role in walking speed recovery one year following the fracture. Subjective outcome measures of mobility and physical activity, recalled from pre-fracture can predict walking speed at one year. They are gentle on the old and medically frail patients in the acute phase after hip fracture, as well as clinically less time consuming.


Assuntos
Exercício Físico , Fraturas do Quadril , Velocidade de Caminhada , Humanos , Fraturas do Quadril/fisiopatologia , Fraturas do Quadril/reabilitação , Masculino , Idoso , Feminino , Idoso de 80 Anos ou mais , Velocidade de Caminhada/fisiologia , Exercício Físico/fisiologia , Estudos Longitudinais , Valor Preditivo dos Testes , Fatores de Tempo , Caminhada/fisiologia , Avaliação Geriátrica/métodos , Limitação da Mobilidade , Acidentes por Quedas/prevenção & controle
9.
J Am Heart Assoc ; 13(8): e031228, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38572691

RESUMO

BACKGROUND: Extended sedentary behavior is a risk factor for chronic disease and mortality, even among those who exercise regularly. Given the time constraints of incorporating physical activity into daily schedules, and the high likelihood of sitting during office work, this environment may serve as a potentially feasible setting for interventions to reduce sedentary behavior. METHODS AND RESULTS: A randomized cross-over clinical trial was conducted at an employee wellness center. Four office settings were evaluated on 4 consecutive days: stationary or sitting station on day 1 (referent), and 3 subsequent active workstations (standing, walking, or stepper) in randomized order. Neurocognitive function (Selective Attention, Grammatical Reasoning, Odd One Out, Object Reasoning, Visuospatial Intelligence, Limited-Hold Memory, Paired Associates Learning, and Digit Span) and fine motor skills (typing speed and accuracy) were tested using validated tools. Average scores were compared among stations using linear regression with generalized estimating equations to adjust standard errors. Bonferroni method adjusted for multiple comparisons. Healthy subjects were enrolled (n=44), 28 (64%) women, mean±SD age 35±11 years, weight 75.5±17.1 kg, height 168.5±10.0 cm, and body mass index 26.5±5.2 kg/m2. When comparing active stations to sitting, neurocognitive test either improved or remained unchanged, while typing speed decreased without affecting typing errors. Overall results improved after day 1, suggesting habituation. We observed no major differences across active stations, except decrease in average typing speed 42.5 versus 39.7 words per minute with standing versus stepping (P=0.003). CONCLUSIONS: Active workstations improved cognitive performance, suggesting that these workstations can help decrease sedentary time without work performance impairment. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT06240286.


Assuntos
Saúde Ocupacional , Local de Trabalho , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Masculino , Exercício Físico , Caminhada , Índice de Massa Corporal
10.
Eur J Histochem ; 68(2)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624064

RESUMO

Antibody-based fluorescence analysis of female reproductive tissues in research of sexually transmitted diseases allows for an in-depth understanding of protein localization, interactions, and pathogenesis. However, in many cases, cryosectioning is not compatible with biosafety regulations; at all times, exposure of lab personnel and the public to potentially harmful pathogens from biological infectious material must be avoided; thus, formaldehyde fixation is essential. Due to formaldehyde's cross-linking properties, protein detection with antibodies can be impeded. To allow effective epitope binding during immunofluorescence of formalin-fixed paraffin-embedded vaginal tissue, we investigated two antigen retrieval methods. We tested these methods regarding their suitability for automated image analysis, facilitating reproducible quantitative microscopic data acquisition in sexually transmitted disease research. Heat-based retrieval at 80°C in citrate buffer proved to increase antibody binding to eosinophil protein and HSV-2 visibly and tissue morphology best, and was the most efficient for sample processing and quantitative analysis.


Assuntos
Formaldeído , Herpesvirus Humano 2 , Feminino , Humanos , Epitopos , Fixação de Tecidos/métodos , Eosinófilos/química , Imuno-Histoquímica , Antígenos/análise , Coloração e Rotulagem , Caminhada , Inclusão em Parafina
11.
Ann N Y Acad Sci ; 1534(1): 19-23, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563614

RESUMO

We are at the beginning of the beginning of the beginning of the development of AI. The ethical issues we first saw and are still grappling with have been overtaken by others, and there are yet others on the horizon.


Assuntos
Caminhada , Humanos
12.
PLoS One ; 19(4): e0302021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625839

RESUMO

Falls among older adults are a costly public health concern. Such falls can be precipitated by balance disturbances, after which a recovery strategy requiring rapid, high force outputs is necessary. Sarcopenia among older adults likely diminishes their ability to produce the forces necessary to arrest gait instability. Age-related changes to tendon stiffness may also delay muscle stretch and afferent feedback and decrease force transmission, worsening fall outcomes. However, the association between muscle strength, tendon stiffness, and gait instability is not well established. Given the ankle's proximity to the onset of many walking balance disturbances, we examined the relation between both plantarflexor strength and Achilles tendon stiffness with walking-related instability during perturbed gait in older and younger adults-the latter quantified herein using margins of stability and whole-body angular momentum including the application of treadmill-induced slip perturbations. Older and younger adults did not differ in plantarflexor strength, but Achilles tendon stiffness was lower in older adults. Among older adults, plantarflexor weakness associated with greater whole-body angular momentum following treadmill-induced slip perturbations. Weaker older adults also appeared to walk and recover from treadmill-induced slip perturbations with more caution. This study highlights the role of plantarflexor strength and Achilles tendon stiffness in regulating lateral gait stability in older adults, which may be targets for training protocols seeking to minimize fall risk and injury severity.


Assuntos
Tendão do Calcâneo , Transtornos Neurológicos da Marcha , Humanos , Idoso , Marcha/fisiologia , Caminhada/fisiologia , Envelhecimento/fisiologia , Fenômenos Mecânicos , Tendão do Calcâneo/fisiologia , Equilíbrio Postural , Fenômenos Biomecânicos
13.
Sci Robot ; 9(89): eadi9579, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630806

RESUMO

Humanoid robots that can autonomously operate in diverse environments have the potential to help address labor shortages in factories, assist elderly at home, and colonize new planets. Although classical controllers for humanoid robots have shown impressive results in a number of settings, they are challenging to generalize and adapt to new environments. Here, we present a fully learning-based approach for real-world humanoid locomotion. Our controller is a causal transformer that takes the history of proprioceptive observations and actions as input and predicts the next action. We hypothesized that the observation-action history contains useful information about the world that a powerful transformer model can use to adapt its behavior in context, without updating its weights. We trained our model with large-scale model-free reinforcement learning on an ensemble of randomized environments in simulation and deployed it to the real-world zero-shot. Our controller could walk over various outdoor terrains, was robust to external disturbances, and could adapt in context.


Assuntos
Robótica , Humanos , Idoso , Robótica/métodos , Locomoção , Caminhada , Aprendizagem , Reforço Psicológico
14.
Clin Biomech (Bristol, Avon) ; 114: 106236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564981

RESUMO

BACKGROUND: Obesity impacts a child's ability to walk with resulting biomechanical adaptations; however, existing research has not comprehensively compared differences across the gait cycle. We examined differences in lower extremity biomechanics across the gait cycle between children with and without obesity at three walking speeds. METHODS: Full gait cycles of age-matched children with obesity (N = 10; BMI: 25.7 ± 4.2 kg/m2) and without obesity (N = 10; BMI: 17.0 ± 1.9 kg/m2) were analyzed at slow, normal, and fast walking speeds. Main and interaction effects of group and speed across hip, knee, and ankle joint angles and moments in sagittal, frontal, and transverse planes were analyzed using one-dimensional statistical parametric mapping. FINDINGS: Compared to children without obesity, children with obesity had greater hip adduction during mid-stance, while also producing greater hip extensor moments during early stance phase, abductor moments throughout most of stance, and hip external rotator moments during late stance. Children with obesity recorded greater knee flexor, knee extensor and knee internal rotator moments during early stance, and knee external rotator moments in late stance than children without obesity; children with obesity also demonstrated greater ankle plantarflexor moments throughout mid and late stance. Interaction effects existed within joint kinetics data; children with obesity produced greater hip extensor moments at initial contact and toe-off when walking at fast compared to normal walking speed. INTERPRETATION: While few kinematic differences existed between the two groups, children with obesity exhibited greater moments at the hip, knee, and ankle during critical periods of controlling and stabilizing mass.


Assuntos
Obesidade Pediátrica , Velocidade de Caminhada , Criança , Humanos , Marcha , Caminhada , Articulação do Joelho , Articulação do Tornozelo , Fenômenos Biomecânicos
15.
J Biomech ; 167: 112064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38582005

RESUMO

Biomechanical time series may contain low-frequency trends due to factors like electromechanical drift, attentional drift and fatigue. Existing detrending procedures are predominantly conducted at the trial level, removing trends that exist over finite, adjacent time windows, but this fails to consider what we term 'cycle-level trends': trends that occur in cyclical movements like gait and that vary across the movement cycle, for example: positive and negative drifts in early and late gait phases, respectively. The purposes of this study were to describe cycle-level detrending and to investigate the frequencies with which cycle-level trends (i) exist, and (ii) statistically affect results. Anterioposterior ground reaction forces (GRF) from the 41-subject, 8-speed, open treadmill walking dataset of Fukuchi (2018) were analyzed. Of a total of 552 analyzed trials, significant cycle-level trends were found approximately three times more frequently (21.1%) than significant trial-level trends (7.4%). In statistical comparisons of adjacent walking speeds (i.e., speed 1 vs. 2, 2 vs. 3, etc.) just 3.3% of trials exhibited cycle-level trends that changed the null hypothesis rejection decision. However 17.6% of trials exhibited cycle-level trends that qualitatively changed the stance phase regions identified as significant. Although these results are preliminary and derived from just one dataset, results suggest that cycle-level trends can contribute to analysis bias, and therefore that cycle-level trends should be considered and/or removed where possible. Software implementing the proposed cycle-level detrending is available at https://github.com/0todd0000/detrend1d.


Assuntos
Marcha , Caminhada , Velocidade de Caminhada , Fatores de Tempo , Teste de Esforço , Fenômenos Biomecânicos
16.
Clin Biomech (Bristol, Avon) ; 114: 106234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38582028

RESUMO

BACKGROUND: Individuals with Parkinson's disease are challenged in making turns while walking, evidenced by reduced intersegmental coordination and reduced dynamic postural stability. Although overground locomotor training previously improved ambulation among people with Parkinson's disease, its effect on walking turns remained unknown. We sought to understand the effects of overground locomotor training on walking turns among individuals with mild-Parkinson's disease. METHODS: Twelve participants with Parkinson's (7 Males/5 Females; Age: 68.5 ± 6.4 years) completed twenty-four sessions lasting approximately 60 min and over 12-15 weeks. Baseline and follow-up assessments included the ten-minute walk test using wearable sensors. Primary outcomes included changes to intersegmental coordination, measured by peak rotation and normalized peak rotation, and dynamic postural stability, measured by peak turn velocities in the frontal and transverse planes. Statistical analysis included one-tailed paired t-tests and Cohen's d effect sizes with α = 0.05. FINDINGS: No effects of overground locomotor training on mean peak thoracic rotation (+0.23 ± 4.24°; Cohen's d = 0.05; P = 0.45) or mean normalized peak thoracic rotation (-0.59 ± 5.52 (unitless); Cohen's d = 0.10; P = 0.45) were observed. Moderate and small effects of overground locomotor training were observed on mean peak turn velocities in the frontal (+1.59 ± 2.18°/s; Cohen's d = 0.43; P = 0.01) and transverse planes (+0.88 ± 3.18°/s; Cohen's d = 0.25; P = 0.18). INTERPRETATION: This pilot study provides preliminary evidence suggesting that individuals with mild-Parkinson's moderately improved frontal plane dynamic postural stability after overground locomotor training, likely attenuating the perturbations experienced while turning. CLINICAL TRIAL REGISTRATION: NCT03864393.


Assuntos
Marcha , Doença de Parkinson , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Projetos Piloto , Caminhada , Modalidades de Fisioterapia
17.
J Biomech ; 167: 112076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583376

RESUMO

Given the known deficits in spatiotemporal aspects of gait for people with Parkinson's disease (PD), we sought to determine the underlying gait abnormalities in limb and joint kinetics, and examine how deficits in push-off and leg swing might contribute to the shortened step lengths for people with PD. Ten participants with PD and 11 age-matched control participants walked overground and on an instrumented treadmill. Participants with PD then walked on the treadmill with a posteriorly directed restraining force applied to 1) the pelvis to challenge push-off and 2) the ankles to challenge leg swing. Spatiotemporal, kinematic, and force data were collected and compared between groups and conditions. Despite group differences in spatiotemporal measures during overground walking, we did not observe these differences when the groups walked on a treadmill at comparable speeds. Nevertheless, the hip extension impulse appeared smaller in the PD group during their typical walking. When challenging limb propulsion, participants in the PD group maintained step lengths by increasing the propulsive impulse. Participants with PD were also able to maintain their typical step length against resistance intended to impede swing limb advancement, and even increased step lengths with cuing. The presence of reduced hip extension torque might be an early indicator of gait deterioration in this neurodegenerative disease. Our participants with PD were able to increase hip extension torque in response to needed demands. Additionally, participants with PD were able to increase limb propulsion and leg swing against resistance, suggesting a reserve in limb mechanics.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Caminhada/fisiologia , Marcha/fisiologia , Perna (Membro)/fisiologia , Fenômenos Biomecânicos , Velocidade de Caminhada/fisiologia
18.
J Biomech ; 167: 112073, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599018

RESUMO

Persons with Parkinson's disease experience gait alterations, such as reduced step length. Gait dysfunction is a significant research priority as the current treatments targeting gait impairment are limited. This study aimed to investigate the effects of visual biofeedback on propulsive force during treadmill walking in persons with Parkinson's. Sixteen ambulatory persons with Parkinson's participated in the study. They received real-time biofeedback of anterior ground reaction force during treadmill walking at a constant speed. Peak propulsive force values were measured and normalized to body weight. Spatiotemporal parameters were also assessed, including stride length and double support percent. Persons with Parkinson's significantly increased peak propulsive force during biofeedback compared to baseline (p <.0001, Cohen's dz = 1.69). Variability in peak anterior ground reaction force decreased across repeated trials (p <.0001, dz = 1.51). While spatiotemporal parameters did not show significant changes individually, stride length and double support percent improved marginally during biofeedback trials. Persons with Parkinson's can increase propulsive force with visual biofeedback, suggesting the presence of a propulsive reserve. Though stride length did not significantly change, clinically meaningful improvements were observed. Targeting push-off force through visual biofeedback may offer a potential rehabilitation technique to enhance gait performance in Persons with Parkinson's. Future studies could explore the long-term efficacy of this intervention and investigate additional strategies to improve gait in Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Retroalimentação Sensorial , Caminhada , Marcha , Biorretroalimentação Psicológica/métodos
19.
Scand J Med Sci Sports ; 34(4): e14628, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629807

RESUMO

The efficacy of interrupting prolonged sitting may be influenced by muscle activity patterns. This study examined the effects of interrupting prolonged sitting time with different muscle activity patterns on continuously monitored postprandial glycemic response. Eighteen overweight and obese men (21.0 ± 1.2 years; 28.8 ± 2.2 kg/m2) participated in this randomized four-arm crossover study, including uninterrupted sitting for 8.5 h (SIT) and interruptions in sitting with matched energy expenditure and duration but varying muscle activity: 30-min walking at 4 km/h (ONE), sitting with 3-min walking at 4 km/h (WALK) or squatting (SQUAT) every 45 min for 10 times. Net incremental area under the curve (netiAUC) for glucose was compared between conditions. Quadriceps, hamstring, and gluteal muscles electromyogram (EMG) patterns including averaged muscle EMG amplitude (aEMG) and EMG activity duration were used to predict the effects on glucose netiAUC. Compared with SIT (10.2 mmol/L/h [95%CI 6.3 to 11.7]), glucose netiAUC was lower during sitting interrupted with any countermeasure (ONE 9.2 mmol/L/h [8.0 to 10.4], WALK 7.9 mmol/L/h [6.4 to 9.3], and SQUAT 7.9 mmol/L/h [6.4 to 9.3], all p < 0.05). Furthermore, WALK and SQUAT resulted in a lower glucose netiAUC compared with ONE (both p < 0.05). Only increased aEMG in quadriceps (-0.383 mmol/L/h [-0.581 to -0.184], p < 0.001) and gluteal muscles (-0.322 mmol/L/h [-0.593 to -0.051], p = 0.022) was associated with a reduction in postprandial glycemic response. Collectively, short, frequent walking or squatting breaks effectively enhance glycemic control in overweight and obese men compared to a single bout of walking within prolonged sitting. These superior benefits seem to be associated with increased muscle activity intensity in the targeted muscle groups during frequent transitions from sitting to activity.


Assuntos
Controle Glicêmico , Sobrepeso , Humanos , Masculino , Glicemia , Estudos Cross-Over , Glucose , Insulina , Obesidade/terapia , Sobrepeso/terapia , Período Pós-Prandial , Comportamento Sedentário , Caminhada/fisiologia , Adulto Jovem
20.
PLoS One ; 19(4): e0300222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558003

RESUMO

Locomotion has been shown to impact aspects of visual processing in both humans and animal models. In the current study, we assess the impact of locomotion on the dynamics of binocular rivalry. We presented orthogonal gratings, one contrast-modulating at 0.8 Hz (matching average step frequency) and the other at 3.2 Hz, to participants using a virtual reality headset. We compared two conditions: stationary and walking. We continuously monitored participants' foot position using tracking devices to measure the step cycle. During the walking condition, participants viewed the rivaling gratings for 60-second trials while walking on a circular path in a virtual reality environment. During the stationary condition, observers viewed the same stimuli and environment while standing still. The task was to continuously indicate the dominant percept via button press using handheld controllers. We found no significant differences between walking and standing for normalized dominance duration distributions, mean normalized dominance distributions, mean alternation rates, or mean fitted frequencies. Although our findings do not align with prior research highlighting distinctions in normalized dominance distributions between walking and standing, our study contributes unique evidence indicating that alternation rates vary across the step cycle. Specifically, we observed that the number of alternations is at its lowest during toe-off phases and reaches its peak at heel strike. This novel insight enhances our understanding of the dynamic nature of alternation patterns throughout the step cycle.


Assuntos
Realidade Virtual , Visão Binocular , Humanos , Disparidade Visual , Percepção Visual , Caminhada , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...